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AFIT/GAE/AR/83S-5
Abstract

This thesis presents a comparison of the longitudinal flying
qualities as predicted by an analytical computer model, a ground-
based simulator, and an airborne simulator. The comparison was
designed to correlate the results and judge whether ground tests
could forecast airborne results. The objective was to determine
and compare the pilot performance in the three cases, and to
determine and compare the pilot ratings in the simulators.
Secondary objectives included an investigation of the effects of
different load factors in both simulators and the effects of
visual and motion cues in the NT-33A. Identical aircraft
dynamics, flight control characteristics, and tracking tasks were
used in each case. The handling characteristics for short period
natural frequencies of 2, 4, 6, 8, and 10 radians per second were
rated using the Cooper-Harper rating scale. In the analytical
model, pilot performance improved as the frequency was increased.
In the ground simulator, the pilot ratings were primarily a
function of how well he could track the preprogrammed task.
Performance improved as frequency was increased. In the airborne
NT-33A tests, pilots preferred 4 to 6 radians per second. Lower
frequencies were too slow and higher frequencies were too abrupt
and uncomfortable despite better tracking performance. The
inconsistent pilot preference above 6 radians per second in the
two simulators is due to the absence of motion cues. The lack of
correlation at the higher frequencies indicates that ground based

simulation cannot entirely replace airborne testing.
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I. INTRODUCTION

év

This thesis presents a comparison of the longitudinal flying
qualities as predicted by an analytical computer model, a ground-
based simulator, and an airborne simulator. The comparison was
designed to correlate the results and judge whether ground tests
could forecast airborne results. Project tests were nducted
using the Optimal Pilot Single Axis Control Task (OPS .
computer program, the ground based Simulator for Airc¢ .- Fiight
Test and Development (SAFTD), and the variable stabil._, USAF
NT-33A aircraft. The objective of this evaluation was to
determine and compare the pilot performance in the three cases,
and to determine and compare the pilot ratings in the simulators.
Secondary objectives included an investigation of the effects of
different load factors in the two simulators and the effects of
visual and motion cues in the NT_33A’§\

Tight experimental control was maintained by programming
identical aircraft dynamics into the models and setting optimum
values for both the short period damping and the control system
dynamics such as forces, gradients, and stick displacements.
These values were obtained from previous research at the same
flight condition which corresponds to an n/ox of 29 g's per
radian. A stochastic pitch tracking task was used in the
computer model while identical pitch tracking tasks were
programmed into the SAFTD TV display and the NT-33A HUD. In the

OPSACT, the root mean square of the tracking error was

P —— )
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determined. In the two simulators, pilot comments were recorded
and tracking ability at short period natural frequencies of 2, 4,
6, 8, and 10 radians per second was rated using the Cooper-Harper
rating scale. Actual tracking error was also recorded on strip
charts in the SAFTD and a magnetic tape data recorder in the
NT-33A. These sources provided a quantitative measure of actual
pilot performance. In addition, HUD camera film was also used to
record airborne tracking tasks.

Computer testing of the analytical model took place on the
Cyber computers at Wright-Patterson Air Force Base, Ohio, and
Edwards Air Force Base, California. Ground simulation was
conducted in the SAFTD at Edwards Air Force Base, California,
between 28 April and 20 May 1983. During 26 hours of SAFTD
testing, 125 lg test points and 37 2g *est points were
accomplished. Airborne testing was conducted at Edwards AFB,
California from 20 April to 6 May 1983, consisting of 20 NT-33A
sorties for a total of 24.4 flying hours. During NT-33A tests,
153 1g and 71 2g test points were accomplished with 33 being
flown with outside visual reference denied using canopy and visor
filters.

The Optimal Pilot Model has been used by Harvey (Ref.l) to
predict the long term (100 seconds) performance of an aircraft
with a lead computing sight. Mullen (Ref. 5) compared the short
term (10 seconds) performance prediction of the OPM to a

simulation with less success than Harvey.
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I1. TEST OBJECTIVE

The objective of this evaluation was to determine and
compare the pilot pitch tracking performance in the three cases,
and to determine and compare the pilot ratings in the simulators.
From this comparison, a correlation between the computer model or
the ground-based simulator and the inflight simulator would
indicate the value of each.

Secondary objectives included determining the effects of a
higher load factor (2g) on pilot opinion in the two simulators
and the effects of visual and motion cues in the NT-33A. The
testing at different load factors was designed to test the
assumption that preferred flying qualities at lg are also
preferred at higher load factors. The investigation of the
visual and motion cues was designed to determine which cues are

most important to the pilot's ratings.

III. TEST ITEM DESCRIPTION
THE OPTIMAL PILOT MODEL
The optimal pilot model used in the analytical portion of

this study was the Optimal Pilot Single Axis Control Task

(OPSACT). This computer program has been previously used to

5).

predict pilot opinion of longitudinal tracking tasks (Ref. 3 and ,
Based upon optimal stochastic control theory, the original l

concept for the model was developed by Kleinman, Baron, and

Levison (Ref. 2). It relies on the assumption that a human

operator with good training behaves in an optimal manner for a




given control task. OPSACT was assembled by Enright using this
concept of Kleinman et al. (Ref. 3).

The model incorporates a closed loop system that includes
the system dynamics of the aircraft and the tracking task, the
display of these dynamics, and the pilot's perception and control
actions (Figure 1). The uncertainties of the real process are
modeled by stochastic noises which enter the system as a random
target load factor, errors in pilot perception, and errors in the

pilot control inputs.

v
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F c E D
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SQUARE
CONTROLLER ESTIMATOR
PREDICTOR

Figure 1. Diagram of the Optimal Pilot Model
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The systems dynamics (Block A) are a combination of the aircraft
dynamics and the pitch tracking dynamics. One of the
assumptions in the developement of this model was that the lg
flying qualities of an aircraft are not significantly altered
when the load factor is increased. Appendix A lists the results
of an investigation that showed this to be true as the frequency
response of the NT-33A aircraft was not change significantly as
the load factor was increased.

The tracking task used in this model was a stocastic pitch
tracking task designed to simulate the pitch tracking task that
the pilots flew in the simulators. It is a zero mean pitch
command with a deviation and time constant similar to the task
programmed into the SAFTD display and the NT-33A HUD.

The state equations of motion were formed using the

following state variables:

x1=(¢; x4 = 6

x2=q Xs-e<

x3 = X Xg = dummy noise state,i
and uE G = -KF,

The equations of motion and target dynamics are combined into

matrix notation

x = Ax(t) + Bu(t) + W(t)

o R

I
l
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0 0
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The pilot sees

this is

For 300 KIAS and W
sp

is 6-6., and the rate of change of the error, €.

in which the "A" matrix is

}
¢] 0 ¢] 0 —Kst i
M tMAZ o 0 0 o 0 }

o |

Z., 0 0 0 o |
U
o
0 4] 0 0 0
0 0 —1/7 k 0
0 0 0 ‘I/Tn
0] 0 0] 0 0
= 2 radians per second, the A matrix is

-
0 o 0 0 -1.339
-2.204 o o 0 o
-1.81 0 0o o o
o] 0] 0] 0 0
0] 0 -0.40 0.114 0o
o o o -20 0
0] 0 0 0 0

Also, B =col [000CO0O0O01]

and w(t) = col [0 0000w 0]

. where w = white Gaussian driving noise.

the pitch tracking error (Block B)., €, which

y(t) = H x(t)

The model of

f
i}
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with y(t) = col [¢ € ]

and the output or observation matrix H is
0 0 o 1 -1 0 0
0 1 0 0 l/x,, -k 0

The time delays that are associated with the relaying and
The time delays that are associated with the relaying and
processing of visual images in the brain are modeled by lumping
them into a single equivalent time delay (Block C). This delay,
T, is nominally 0.2 +0.05 seconds.

A Kalman estimator (Block D) works in series with a least
mean square predictor (Block E) to yield a "best estimate" of the
system state vector from a time delayed, noisy observation
vector. The estimate is then weighted by a set of optimal
feedback gains which are determined from the solution of an
optimal control problem. This weighted estimate is used to
produce a scalar command control input (Block F), uc(t), which is
a longitudinal stick force.

The neuromotor dynamics are modeled by including a first
order lag (Block G). This lag accounts for the pilot's inability
or reticence to make rapid or excessive control inputs.

Controller remnant accounts for the inherent random errors
associated with the preception of displayed variables and in the
pilot control inputs.

Since the model is linear, these errors are consolidated as
observation noises, zy. and motor noise, v These !y and v, are
assumed independent, zero mean Gaussian noises with enough

bandwidth to be considered white noise processes.




A detailed description of OPSACT is contained in References

3 and 5.

THE GROUND SIMULATOR (SAFTD)

The Simulator for Aircraft Flight Test and Development
(SAFTD) is a real-time simulator laboratory used to support
flight test programs at the Air Force Flight Test Center. The
Test Pilot School's simulator model was developed from an
existing F-16 model. Two digital computers arranged in a
distributive processing network were used with a generic fixed
base fighter cockpit with a moveable center stick as shown in
Figure 2. The stick was connected to a McFadden artificial feel
system which generated the stick dynamics. Simulator operation
was controlled using an interactive alphanumeric cathode ray tube
(CRT) display and data entry keyboard. Two synchronous
processors used aerodynamic coefficient lookup tables while
integrating the appropriate equations of motion. Thus the
simulator modeled the aircraft for all values of airspeed and
angle of attack (AOA). A series of test pulses identical to
those used in the NT-33A were fed to a pitch steering bar
displayed on a 25 inch raster scan TV. The 25 inch TV was
partially covered to match the dimensions of the NT-33A HUD. The
maximum time delay between the stick input and update of the TV
display was three frames or 48 milliseconds. This is well below
the pilot perceptual threshold of approximately 100 milliseconds
(Ref. 18). A time history of eight key flight parameters were

displayed on strip charts (Appendix D).

e
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Figure 2. SAFTD Layout

THE NT-33A

The test aircraft, NT-33A Serial Number 51-4120, is a T-33A

modified with a variable stability system by CALSPAN Corporation,
Buffalo, New York. This variable stability system uses response
feedback to modify the static and dynamic responses of the basic
NT-33A by commanding control surface positions through full
authority electrohydraulic servos. System components include a
programmable analog computer, associated aircraft response

sensors, control surface servos, and an electrohydraulic )

force-feel system. The rear seat pilot can vary the computer

gains through controls located in the rear cockpit allowing
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FITY

changes in airplane dynamics and control system characteristics
in flight. Stick friction and breakout forces, stick deflection
gradients, and stick force gradients were achieved through an
electrohydraulic system. A schematic of the aircraft flight

control system is presented in Figure 3.

AUDDER POSITION
SEAVO

AILERON POSITION
SERVO

RUDOEA PEDAL
FEEL SERVO

ELEVATOR STICK
FEEL BERVO
ALERON STICK
FECL SEAVO

NOAMAL 130 GALLON
TIP TANK

Figure 3. NT-33A Control System Layout

An on-board Leach MTR 3200 magnetic tape recording system
was utilized to record aircraft flight conditions, flight control
positions, and the tracking task parameters. A front cockpit
AVQ-7 HUD displayed the tracking task. The system incorporated a
general purpose digital computer and programmable display
generator. This system has a processing time delay of 32
milliseconds. The pitch tracking task that appeared on the HUD

was preprogrammed on magnetic tape. A 16émm HUD camera was used

10




to record a tracking time history.
is presented. in Figure 4. The primary symbols used by the pilots

were the pitch command bar, waterline marker,

The layout of the HUD display

and horizon line.

350

Command Bar ——

Waterline Marker

Horizon Line —/

LMWV

Figure 4.

NT-33A HUD Format
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1V. TEST METHODS AND CONDITIONS

OVERALL

An important element in the achievement of valid results was
the matching of the dynamics of the various tests. The
analytical model used the short period approximation to model the
aircraft. Baseline testing was accomplished in the SAFTD and
NT-33A to verify that the configuration of each matched the
dynamics of the short period approximation. This was
accomplished by analog matching open loop strip chart data with
computer generated response plots. Figure 5 shows an example of

the analog matching.

[

Computer Trace SAFTD

Response to Pitch Doublet,wsp = 6 Rad/Sec, 4

Figure 5. Sample Analog Match

Also, the breakout force, friction force, stick deflection

gradient, stick force gradient, and the stick damping in the !

12
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simulators were compared and verified using force gauges and

strip charts.

ANALYTICAL MODEL

Tests with the analytical model were conducted using
aerodynamic derivatives from the NT-33A at the flight conditions
as the inflight tests. These conditions corresponded to 300 KIAS
at 13,000 feet MSL. This gives a normal load factor per angle of
attack (n/x) of 29 g's per radian.

The short period natural frequency was varied by changing Mo
with Mq being changed to maintain a constant 0.7 damping ratio.
The elevator linkage gain was varied to maintain a constant stick
force per g. This corresponded to the technique used in the

SAFTD and the NT-33A.

SIMULATION

Data collection was accomplished by performing identical HUD
pitch tracking tasks at the same flight condition in both the
SAFTD and NT-33A simulators at specific short period natural
frequencies. During each 90-second task, only one frequency was
tested and tracking ability was then rated using the

Cooper-Harper rating scale (Figure 6) and pilot comments.

13
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ADEQUACY FOR SELECTED TASK OR
REQUIRED OPERATION

AIRCRAFT
CHARACTERISTICS

DEMANDS ON THE PILOT
IN SELECTED TASK OR REQUIRED OPERATION

PILOT
RATING

Excellent Puot compensation not a factor for
Highty desirable desired performance
Good Pilot compensation not a lactor tor

Ncgligible deticiencies

dessted performance

Far — Some middly
unpleasani deticrencies

Murmat plot compensation tequired lor
deswed performance

Minor but annoyng
deticiencies

Desircd performance requircs moderate
pilot compensation

Modcrately objeclionable
dehiciencies

Adequate performance requires
considerable pitot compensation

Very objectionabie but
tolcrable deliciencies

Adequale perlormance requires extensive
piot compensation

Major deficiencies

Adcquate pertormance not aitainable with
maximum tolerable pilot compensation.
Controliabi:ty not i question

b5t No Dethciencies
satistactory without warcant
improvement? mprovement
is adequate
performance No Det
dllainable wih a tolerable require
pilol workload? improvement

Major deficiencies

Considerable pilot
for control

pensation is required

Major deliciencies

intense pilot compensation s required to
retan control

o/o/ofoloiofelole

No 'lmprovcmcm
1 mandatory

s
it controfiable?

Major deficiencies

Control wiit be tost during some portion of
required operation

o

I Pilot decisions

Figure 6.

The pitch tracking tasks consisted of a 90-second series of

The Cooper-Harper Rating Scale

steps and ramps which commanded up to + 4 degrees from the

initial level flight reference.

presented in Figure 7, were used to prevent pilots from

memorizing the task.

Both tasks were designed by CALSPAN to

excite longitudinal dynamic modes that were important for

successful air-to-air pitch tracking.

14
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Figure 7. Preprogrammed Pitch Tracking Tasks

The pitch command bar was programmed to move in pitch
according to the tracking sequence. The SAFTD task was displayed
on a television screen while the NT-33A display was on a HUD
combining glass. The project pilot attempted to track the moving
command bar with the top of the "W" (waterline marker) in both
simulators. The "W" was the same size in each simulator (5.3

milliradians). A moveable centerstick controller was used for
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all tests in both simulators. Desired performance in both

simulators was defined as acquisition of the moving pitch command
bar with the top of the "W" within one second and then maintain
pitch attitude within a "W" width for the duration of the test
pulse. Adequate performance was acquisition within two seconds
and then maintain pitch attitude within two "W" widths of the
pitch command bar for the duration of the pulse.

The tracking task was repeated in each simulator varying
only the short period natural frequency (u% ). which was varied
in even increments from 2 to 12 radians per second in the SAFTD
and from 2 to 10 radians per second in the NT-33A. Twelve
radians per second could not be tested in the NT-33A because of
structural mode excitation. At this frequency, an unstable AQOA
feedback to the elevator caused the variable stability system to
exceed its design limits and automatically disengage. All other
aircraft and control system variables were selected to provide
good flying qualities. These optimized values were obtained from
previous testing at an n/o of
29 g's per radian and are listed in Table 1 (Ref 12). The
lateral directional characteristics were chosen to provide good
control harmony.

The ratio of n/x was maintained at 29 g's per radian in both
simulators by controlling altitude and airspeed at 13,000 + 1,000
feet pressure altitude and 300 + 15 KIAS respectively. The SAFTD

was programmed to simulate the NT-33A at this flight condition.
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Table 1
SELECTED DYNAMIC PARAMETERS
(13,000 £t PA, 300 KIAS)
PARAMETER VALUE
Short period natural frequency 2 ~ 12 (rad/sec)
Short period damping 8.78
Normal g per alpha 29.88 (g/rad)
Dutch.roll natural frequency 3.20 (rad/sec)
Dutch roll damping 8.35
Phi to beta ratio 2,00
Roll mode time constant 8.35 (sec)
Phugoid natural frequency 8.89 (rad/sec)
Phugoid damping .05
Longitudinal stick force per g 6.5¢ (1lb/g)
Longitudinal stick force per inch 8.88 (1b/in)

Test points were selected to allow equal pilot exposure to

each configuration. The value of ug was unknown to the project

p
pilot and the sequencing order of uép‘s tested was determined
with a random number generator.

Limited testing was done in both simulators at a nominal
2g's by trimming for lg level flight and then maintaining a
nominal 60 degree banked turn throughout the tracking sequence.

The effects Of outside visual cues on pilot ratings in the
NT-33A were investigated by denying outside references.
Temporary restricted vision was accomplished with a blue helmet
visor and an amber NT-33A cockpit screen. This combination made

the HUD clearly visible while making the scene beyond the HUD

appear as darkness.
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V. TEST RESULTS

Test results are presented in three parts:

results, the SAFTD results, the NT-33A results,

of the three.

the OPSACT

and a comparison

In the OPSACT model, the performance of the "pilot" got

progressively better as the frequency was increased (Figure 8).

The Q , matrix is the relative weight of the tracking error and

the rate of change of the tracking error.

i 1.5
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Figure 8. OPSACT

"Pilot"

Per formance

In the SAFTD, pilots rated the low frequency dynamics as
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! poor and gave successively better ratings as short period

frequency was increased. Representative pilot comments for

tested short period frequencies are summarized in Table 2.

Table 2

SAFTD GROUND SIMULATOR PILOT COMMENTS

-
i i
| : W sp COMMENTS
i | 2 Very slow, poor pradictability, large
: i overshoots, sluggish
f | 4 Slightly slow, fairly predictable,
: ; moderate overshoots, large inputs
{ !
H : 6 Quick, moderate predictability, small
i ovecrshoots, lots of compensation
8 Quick, good predictability, small
oscillations
16 Really quick, good predictability,
1 small overshoot, hardly any PIO
) 12 Very quick, good predictability, small
overshoot, pretty comfortable, no PIO
problem

[ SN

In addition to the pilots' word picture, graphs of

Cooper-Harper ratings versus short period frequency are plotted

in Figures 9A and 9B.
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Figure 9A depicts statistical confidence intervals showing
the predominant Cooper-Harper ratings for each tested frequency.

It is not possible to plot exact statistical intervals such as 90
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or 95 percent for each frequency as the Cooper-Harper ratings are

discrete values. The confidence interval was determined by the

formula:
S-1 n
_ n
Priy <l dy,) = t(E—:r(k)(l/z)

This states that there is a fixed probability that I8, the median
Cooper Harper rating, will be between a minimum and maximum
rating, Yr and Yo I1f the ratings are rank ordered, r is the
position of the first occurrence of the lower rating and s is the
last occurrence of the higher rating. The relationship applies
regardless of the distribution of the sample or the value of the
median. Figure 9B shows the absolute range of Cooper-Harper
ratings for each tested frequency as well as the median and mean
value. Figures lOA and 10B present the 2g test results for the

SAFTD in the same format.
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Figure 10A. Confidence Intervals for SAFTD at 2g
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The SAFTD results show an increasing pilot preference for

higher frequencies. SAFTD rating confidence intervals show a

negligible difference between 1lg and 2g testing while the mean
ratings are worse at 2g. The preferred frequencies are the same
at lg and 2g, supporting the assumption that flying gualities

that get the better ratings at low load factors will get the

better ratings at higher load factors.
Figure 11 shows how the SAFTD pilot performance inproved as

the short period natural frequency was increased.
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Figure 11. SAFTD Tracking Errror Versus Frequency

The NT-33A in-flight results follow other flight test
results. The pilots disliked the very low frequencies, liked the
predictable medium response area, and disliked the uncomfortably
abrupt high frequencies. As in the SAFTD, there was no
significant difference in pilot opinion and Cooper-Harper ratings

between 1g and 2g tests, with the numerical differences primarily

attributed to sample size. Here, there was not the difference in

mean ratings that occurred in the SAFTD. Testing with no outside
visual references had a negligible effect on ratings. The pilots

focused on the HUD during the tracking task in either situation,
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eliminating background visual cues as a major factor in pilot
ratings.

The NT-33A lg results are presented in Table 3 and Figures
12A and 12B. Table 3 summarizes the pilot opinions concerning
response, predictability, PIO tendency, and work load. Figure
12A presents the statistical confidence interval on the median
Cooper-Harper rating and Figure 12B shows the absolute range of
ratings given to each tested frequency as well as the sample

median and mathematical mean.

Table 3

NT-33AR PILOT COMMENTS

Wsp COMMENTS
2 Sluggish, poor predictability,
large overshoots, a lot of
compensation
4 Good response, good predictability,

comfortable, minimal compensation

6 Good response, not abrupt, good
predictability, feels good

8 Quick response, abrupt, less
predictable, a little uncomfortable,
some PIO tendency

1¢ Jerky, too jumpy, increased work
load, large compensation,
uncomfortable, bobbles, PIO prone
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The 2g test results for the NT-33A are presented in Figures

13A and 13B.

difference between 1g and 2g ratings.
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Figure 14 is a plot of pilot performance versus short period
natural frequency in the NT-33A. RMS error was not available

because of format incompatabilities between the NT-33A data

i
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acquisition system and the Test Pilot School computer. Error

counts were manually produced from strip charts by determining
the area under the curve which was the error between the pitch
command and the actual pitch angle. This provides the same

relative indication of performance versus frequency as RMS error.
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Figure 14. NT-33A Error Count Versus Frequency

The project objective was to compare the OPSACT results, the
SAFTD results,and the NT-33 in-flight results and see if ground
tests could forecast airborne opinions. Tight experimental
control was maintained so that any correlation between the ground

and in-flight simulators was not biased or circumstantial.
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The OPSACT and SAFTD RMS performance improved as the short
period natural frequency was increased. The NT-33A performance
was not well defined at high frequency where it tended to be
worse.

The Cooper-Harper ratings summary in Figure 15 shows that
the ground simulator results correlate positively with NT-33
results at lg for low and medium short period frequencies (2, 4,
and 6 radians per second). At higher frequencies (8 and 10
radians per second), the ground simulator ratings and performance

continued to improve while in-flight ratings worsened.

10

COOPER-HARPER RATING
w

4.
3 NT-33A )v\
SAFTD
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1 ——_ v ¥ A A
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SHORT PERIOD FREQUENCY (rad/sec)

Figure 15. Cooper-Harper Trends at lg
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VIi. ANALYSIS

This section offers an explanation for the considerable
difference at the higher frequencies between the ground-based
studies and the airborne simulation despite each case having
identical equations of motion and control dynamics.

Performance error or root mean square (RMS) error was
measured as the difference between the preprogrammed pitch angle
commanded and the actual pitch angle which the pilot controlled.
A small RMS error figure signifies that the command bar was
quickly and accurately acquired while a large number implies slow
response and/or tracking difficulty. Charting performance was
not a measure of the "best pilot", but rather provided insight as
to why a pilot preferred certain frequencies and could indicate
whether a pilot performed consistently in different runs testing

the same frequency.

The OPSACT allows weighting of the pilot's control inputs

due to tracking error and rate of change of tracking error. This

study found that any weight greater than one percent on the rate

cause. the pilot to prefer the lower frequency of two radians per

second. If the weighting was such that that the OPSACT

performance at two radians per second paralleled the SAFTD and
NT-33A, the OPSACT results followed the SAFTD.

Since the SAFTD could not p~«-.ide "feel" cues, the (
performance criterion dominated p.i.ot opinion at all frequencies /

during the ground test phase. In the SAFTD, Cooper-Harper !

ratings were directly proportional to RMS performance which

improved with successively higher frequency. Figure 16 depicts
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the pilots' performance versus the Cooper-Harper ratings
assigned. This evidences linear behavior with an 80 percent
correlation. Figure 11 depicts the RMS error versus short period

frequency as a second order behavior. The graph indicates that
per formance improves as frequency increases. A second order fit
had a 74 percent statistical correlation. This suggests the
hypothesis that performance is the primary variable affecting
pilot ratings in the ground simulator. Unlike the NT-33A, there

are no uncomfortable motion cues at the higher frequencies.

Therefore, Cooper-Harper ratings in the SAFTD tend to improve as

frequency increases.
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Figure 16. SAFTD Tracking Error Versus Cooper-Harper
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In the NT-33A tests, the pilot opinions were driven by three
factors: tracking accuracy (performance), comfort, and pilot
compensation. These factors changed in relative importance as
the frequency changed. The pilots' comments indicated that
performance or ability to accurately track the pitch command bar
was a primary variable in determining the flying quality ratings
for low and medium frequencies. At higher frequencies, however,
"jerkiness" or uncomfortably abrupt motions forced the pilot to
make large compensations and drove the ratings to worse levels.
Plots of performance versus Cooper-Harper ratings and short

period frequency in the NT-33A appear in Figures 17 and 14.
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Figure 17. NT-33A Error Count Versus Cooper-Harper
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Unlike the SAFTD results, where a direct linear relationship

between Cooper-Harper ratings and performance was established,
NT-33A results did not correlate well as other factors affected
the ratings. One of these factors was g onset rate, which was
rapid enough at high frequencies to cause problems in maintaining
steady stick inputs, and in some cases, made focusing on the HUD
difficult. Despite the abrupt motion cues, one pilot showed the
same increase in performance with higher frequency that the

ground simulator results suggested. Figure 18 presents this
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Figure 18. Pilot #2 Error Count Versus Frequency

Hand reduced tracking error data indicated two different
behavior patterns at 10 radians per second, the highest tested
frequency in the NT-33A. Either the pilot aggressively tracked
the commanded task and ignored the very abrupt motions or the

aggressive tracking was tempered to maintain a comfort level.
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The resulting error counts reflect this different level of
aggressiveness. Therefore, it is possible that pilot performance
could be improved with frequency if the effects of the other
factors could be mitigated. This "other factor" hypothesis is
amply evidenced by the low correlation between RMS versus
Cooper-Harper plot in Figure 17.

The Cooper-Harper rating system defines major thresholds
based on a combination of performance, work load, and pilot
compensation. Thus, performance is not an overriding factor in
pilot opinion. Further research on analytical modeling and
ground simulation needs to incorporate items such as pilot
workload and pilot compensation to keep the g onset rate
comfortable into the prediction.

There was no significant difference between lg and 2g

results during project tests. These results are consistent with

the analysis shown in Appendix A. Therefore, the Military

Specification contention that lg predictions characterize higher
load factors cannot be refuted. Since the project was primarily
aimed at a lg comparison of simulators, 2g was only tested for a
statistically significant sample size. The loaded testing should

be continued at higher load factors and in different aircraft.

Testing in the NT-33A at the 300 KIAS, 13,000 feet MSL flight

condition at no more than 2g allowe” - he aircraft to remain in

the linear portion of the lift curve. Testing at higher g in the
non-linear portion of the curve or testing aircraft with

different 1ift slopes may produce a different conclusion than

this limited evaluation.
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VII. CONCLUSIONS AND RECOMMENDATIONS

The computer pilot model and ground based simulator modeled
the airborne pilot performance trends well. However, performance
is not the only criteria that a pilot uses to rate the flying
qualities of an aircraft. The pilot considers other factors such
as g onset rate when he forms his opinion. Therefore, any model
which uses performance as a dominate criteria will not generally
be successful. The model can, however, be used in parallel with
the airborne simulator or test article to reduce airborne test.

Further work with the weighting matrix in the analytical
model might produce a combination that would more closely
parallel the airborne tests. One method of finding this
weighting would be to generate a time history of the pilot model.
By comparing the time history to a time history of the
simulators, the behavior of the model could be adjusted to be
similar to actual pilots.

The assumption that the preferred lg flying qualities will
also be preferred at 2g and higher cannot be refuted by this
study, and, at least for longitudinal dynamics, is supported by
the analysis in Appendix A. More testing at higher load factors
is recommended.

For this type of task, which has the high fidelity of a HUD,
denying outside visual references did not have a significant
effect on pilot performance or ratings. This means that the

difference between the SAFTD and NT-33A were dominated by the
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effects of motion. Therefore, using a HUD type task with high

1

i fidelity reduces the number of variables between the studies.
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APPENDIX A
ANALYSIS OF THE EFFECTS OF LOAD FACTOR
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INTRODUCTION

when doing aircraft design studies, the decoupling of the
longitudinal and 1lateral axes makes the problem tractable.
However, many practical flight conditions require banked, turning
flight which causes coupling between the axes of motion. By
investigating the frequency response of a NT-33A in several
steady, level turns, this appendix determines the validity of
using decoupled equations to study flight conditions where the
axes are coupled.

Eight interdependent equations of motion are required to
model three dimensional flight. This model 1is based on three
force equations, three moment equations, and two kinematic
relationships which were all linearized about an equilibrium

condition.

The data for this analysis were extracted from NASA CR-2144

(Ref. 6). The NASA data are listed in two formats, graphs and
tabular charts. The graphical data were non-dimensional and in
stability axes. The tabular data were dimensional and in body

axes. To accomplish the analysis, all data were transformed into
dimensional form and set in the stability axis system appropriate
for straight and level (lg) flight. The change in angle of
attack required to maintain each load factor was then determined.
Finally, the data were transformed to the sets of stability axes
corresponding to each load factor and the frequency response for
the appropriate control input was determined using TOTAL, a

computer program for analyzing linear dynamical systems (Ref. 7).
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VARIABLES OF INTEREST

The important variables in a handling qualities study are
those that are easily preceived and controlled by the pilot.
Rate variables such as q, the pitching rate, and p, the rolling
rate, are not affected by the orientation of the coordinate
system. Thus, q and p were chosen as the variables of interest.
Theta was chosen so it could be compared to (.

The frequency range of 10

chosen as this encompassed the response characteristics of a

typical pilot.

EQUATTONS OF MOTION

3 to 102 radians per second was

Assuming a flat, nonrotating earth, a rigid, symmetric

vehicle, and a

equations applicable to the problem.

Force Equations:

Moment Equations:

Kinematic Relations: b
B

stationary atmosphere makes the following

X - mg sin 8§ =m (ﬁ + gw - rv)

Y + mg cos 8 sin ¢ = m (V + ru - pw)

"

Z 4+ mg cos g cos ¢ =m (w + pv -qu)

L=1I0p-1I,(c+pa - (I, -1,)ar
2

-1,, (2 -ph -

M X

I
y

N = I,f- I, (6-aqr)- (I, -1I)pq

Qe

z Ix) rp

P+ 4qsing tan g+ r cos ¢ tan ¢

g cos - r sin ¢

v= (@ cos ¢ + r cos $) sec @

Note: The ‘wequation is independent of the

other equations so it is not required for this

study.
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These equations were linearized about a trim condition

representing a steady, level turn. The following substitutions

were made:
1. ee = 0 by definition of a steady, level turn.

2. cos 4, ¥ 1 and sin /% £ ¢ as the largest A% for the load

0.00253 radians.

]

factors investigated was ﬂ%

3. pg = 0 when &, = 0.

The change in angle of attack for each flight condition was

determined by (Ref. 8:426):

1
C C A Xe C 0
Ma M = -| ™| we sing / (2 V) +
CL‘ CL AS. Cqu (n - 1)|Cy

The change in angle of sideslip was checked using:

C C C Cc C

Yo ¥, s A Yo Yol r°
Cn/3 C“s, Cn& ‘. C“F Cnr
3:424):

The equilibrium values of p, q, and r are (Ref

P o
q = sin e W
e cos Pe

The computer programs which solve these sets of equations

are listed in Appendix B.
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The resulting equations are:

[m] WV = [T, cos Gpe ~ Dv] AV + [mReVe] AB
+ [—Te sin U o + Le - DOl - mqeve] Aa
- D
+ [-mg} pp + I Gel As o
(mv,] Ag = [mr ] AV + [YBl 6t lYpl AP
+ [—mve + Yr] At + {mg cos ¢e] A+ [YGI AS
. !
[mVe + Ld) e = [—mqe - 'I‘V sino\te - Lv] A" ‘
+ [—Te COS oo ~ De - La] Ao + [mve - Lq] Ad
+ [-mg sin ¢.] Ap + (L Ge] AS o
(1,1 ap + [-I,,] AT = [L8] ag t [Lp + szqel AP
* I, - ) oM
+ (L + (Iyy - Izz) q.) ar + (L1 A¢
(L) &+ M ] Fa = (My) AV + (M ] g
+ 1, - I.) . ]ap+ [Mql AQ
+ IZszre] AL + [Mse] AS
{1,) ar + {-1,,] Ap = [N g a8+ [N, + (1 - 1Iy) q]8P
+ [-I,,c.) aq + [N, - T, .q,] Ar
+ [N
( 51 AS
AT"= P + la, sin g, + r cosg I a8
76 = lcos $o) 249 + [-sin ¢_] & + [-g, sin ¢, - r, cos ¢ ] 4¢
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DATA MANIPULATION

The following algorithm was computerized for the transfer of

data from its raw form to that required by TOTAL:

FLOW CHART FOR DATA PROCESSING

Enter constants
and Non-dimensional Quantities

{

Convert Inertia Terms to Stability Axes
Dimensionalize All Non-dimensional Data

y

{Enter Dimensional Dat$7
v

Transform to Stability Axes

Invert A°§ Matrix

Y
Read Load Factor

y
Compute « and Aue
Verify D < T, and n < 4.5

ax

Rotate Stability Axes by - &ax
Compute [A] and [B] Matrices for TOTAL

i
Print [A] and [B]

The computer code is listed in Appendix B.
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* FREQUENCY RESPONSE ‘
The program TOTAL takes equations of the form :
x = [A) x + [B] u
y = [c] x
and generates the transfer functions between user designated
inputs and outputs. From these transfer functions, the program
is able to generate Bode plots.
i
RESULTS |
; | The Bode plots in Appendix B show the frequency response of i
f ; the NT-33A. |
‘ In each case, the Eh@e response is of the same general form ;
{ with a spike at the damped frequency of the phugoid. This occurs |
: at higher frequency as the lo2d factor is increased (Figure |
: B1-BS). The corner frequency of the Bode plot is the short x
period frequency of 3.0 radians per second. The response 1is L
reduced due to the effects of the bank angle. That is, as the
aircraft increases its equilibrium bank angle, the aircraft's
pitch rate response produces less pitch attitude change. This
can be seen by examining the ié equation for increasing F;. As
the aircraft approaches 90° of bank, pitching motion produces no
) change in pitch attitude.
The ‘74k is generally unchanged for differing values of load
factor (Figure B6-B10). It contains a spike at the same fre-
quency as the spike in the ©/7, transfer function. The short
period frequency is also 3.0 radians per second.
44 '
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The =/§, response 1is not altered significantly by load
factor. The response using the uncoupleil lateral equations and
the coupled equations with zero bank angle is the same (Figure
B11-B12). At load factors greater than one, a spike at the
phugoid frequency occurs and the very low frequency response does
not go to zero as rapidly (Figure B12-Bl4). These two results

occur because of coupling between axes.

CONCLUS IONS
During steady, level turns, the frequency response between
NT-33A aircraft dynamics and control inputs is not significantly
altered when the load factor is varied. In the range of normal
input frequencies, these variables are especially consistent.
Thus, designs optimized for a flight condition such as
straight and level will retain the same response characteristics

in a steady, level turn, which is a coupled flight condition.
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APPENDIX B
COMPUTER LISTINGS AND

BODE pLOTS
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-
{

10
20
30
40

60
70
80

100
110
120
130
140
150
160
170
180

190 ¥

200
210
220
230
240
250
260
270
280
290
300
310

330
30
350
360
370
380
390
4Loo
410
420
430
440

460
470
480
490
500

ReM
ReM
RieM
Rt
ReM

THeSIs ALD:  FINUS THeE "A® AND °*B' MATRICES FOR ThHk
BASIC CUUfLeD AIRCHAFT BJUATIONS.

BY JIM PAYNE
MARCH/AFRIL 1982

RiM
DIM A(8,8),5(2,2),F(2),H(2),<(2),U(8),2(2,2)

DEF FN R(I) =

ReM
Rbd
REM
REM

ENTR CONSTANTS

NT-33A MACH = .4 H = SkA LEVEL

REM
DR = 57.29578

Red

HNEAD KO, V, DO, TM,AQ, CL,CD

DATA

ReM

INT (I * 1000000 + .5)

ENTER VARIABLE QUANTITIES

1000000

.002378,447, .0185, 5200, .9, .24, .02
A0 = 40 / DR

REM  eNTER NON-DIMENSIONAL DATA

ReM

READ DA,YP,YR,IA,Lq,LE,LV,DV
'13310000 50 9.0. -%5' 0000183.0

DATA

Cw = CL

KK = (cD - DO) / (CL * CL)

D3 = DA
READ LB,LP,LR,NB, Nr,Ni

DATA

-.09,-.58,.095,.057,-.008,-.148

READ MD,Mu,ME,MA,MV
~4.3,-10.33,-.90,~.51,0
(1) = Musw(2) = 1

DATA

4(1,1
2(2,1
Red
M
RoM
CA =
SA =

)

= MA12(1,2) = M
= LA:4(2,2) = Lo

CUNVoRT INsRTIA TO STABILITY AXIS

cus ( - A0)
SIN ( - A0)

Il = IX % CA* CA +2 % ZX ® CA* SA + IZ* SA*GSA
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510 [3 = IZ % CA % CA - 2% 4L * CA*SA+ IX*%SA®*SA
520 X = (14 - IA) * CA * SA + 4K * (CA * CA - SA » SA)

530 14 = I1:14 = I3

550 KuM  CONVeRT TO DIMENSIONAL DATA

560 TV = 0

570 Q¢ = RU *

580 DV = q * DV

590 LA = @4 * DA

600 LV = g4 * LV
610 LB = @« * B * LB
620 1A = @4 * 1A

630 Lt = ¢ * B * LP
640 Ly = Qo * Ik

650 LR = W& * B * LK
660 Lis = wd * LE

670 MV = qu * C * NV
680 MA = o * C * MA
690 MD = qw * C * MD
700 Mg = qd * C* Ma
710 ME = @4 * C * ME
720 NB = Wy * B * NB
730 NP = Qo * B * NP
740 Ng = Q4 * B * NR
750 YP = qu * YP

760 YR = @@ * YR

770 RiM

vev*s /2

780 ReM  ENTER DIMENSIONAL DATA

790 R:M

800 R#AD XU,YB,2U,XE, XW,sW,2kE
810 DATA -.0104,-.181

820 Rui
830 KeM  TRANSFORM
840 ReM

850 DV = =~ (AU * cA
860 D3 = =~ (Xw * CA
8720 LV= - (4U* CA
880 L3 = - (4w * CA
890 D = - (Xg* CA
900 L9 = - (LE * CA

910 M

BODY

1 % % % *

+

,-.128,.620,.0562,-1.73, 4kt bt

CA
cA
CA

L+

Zu * SA
X * SA

(xw

Xy
Zu

ca + (2U

)

-+

+ 1

TO STABILITY AXIS

ZU) * CA * 5A + ZW * SA * SA
ZW) * CA % 3A - ZU * SA * 5A
XU) * CA ® SA - X« * SA * SA
XW) * CA * SA + XU * SA * SA

920 nsM  REDEFINE NASA DATA FOR EQUATIONS OF MOTION

930 RiM

%0 YB = * V * YB
950 DV = DV * M

960 D3 = D3 * M * V
970 LV = LV * M

980 L3 = L3 * M * V
990 Dk = D * M
1000 19 = L9 * M
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1010

1020 Mw

1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500

)

MD = MD
Mg
LD
L
Lk
NE
NR
REM
RiM
ReM
FOR L
FOR J
2{1,J)
NEXT
NEXT
Rud
ReM  FIGURE TRIANGULIAR FACTORS OF MATRIX SOLVER
REM
NN =2
F(NN) = 1
FOR K =1 TO NN - 1
MM = K
FORI =K+ 1 TO NN
IF ABS (&(I,K)) « = ABS (E(MM,K)) THEN 1260
MM = I
NEXT I
F(K) = MM
IF MM = K THEN 1300
F(NN) = =~ F(NN)
£(MM,K) = B(K,K)
E{K,K) = P
FOR 1 = K +1 TO NN
8(I,K) = - u(I,K) /P
NEXT I
FORJ = K+ 1 TO NN
T = k(MM,J)
u%ﬂM.J} = 1(K,J)
B(K,J) = T
IF T = 0 GOTO 1440
FORI =K+ 1 TONN
B(I,J) = &(I,J) + E(I,K) * T
NEXT I
NEXT J
NEXT K
ReM
RiM  THE MAIN LOOP
REM
READ N
DATA &

Ly

NP
NR

gnn BB MR
* ¥ ¥ ¥ % ¥ %
; N N N
PN GNP N
[SMJR VIR VIR VIR VIR VIR
* % % ¥ ¥ ¥ %
<<

< ctwwwaaa
2
><

3

FOR DELTA ALPHA SOVLER

Bnn
[
Hag
-

S~ NN
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U U U

1880
1890

1910
1920
1930
1940
1950
1960
1970

1990
2000

Fis = ATN ( SR (N * N-1)) + ( 3GN (N) - 1) * 1,5707963
W= G* TAN (bm) / V
FE' = w % C* SIN (Fe) / (2* V)
H(l) = - Q) * F¥
u(zﬁ = - @2) *FF+ (N-1)%*Ci
Qe = W * SIN (Fz)
Re = w * CUS (Fm)
R
REM  BACK SUBSTITUTE TU FIND DELTA ALPHA
ReM
FOR K = 1 TO NN - 1
MM = F(K)
S5 = H(MM)
H(MM) = H(K)
H(K) = S>
FOR 1 =K+ 1 TUNN
H(I) = H(I) + B(I,K) * ss
NEXT
NEXT
FORJ =1 TU NN - 1
K=NN-J+1
H(k) = H(K) / u(K,K)
55 = - H(K)
FORI =1TONN-J
H(I) = H(I) + B(1,K) * 33
NuXT
NEXT
H(1) = H(1) / B(1,1)
AD = H(1)
REM  CHECK THAT DRAG < THRUST
L=N®¥WT
CL=2#*L/ (RO* V *V*s5s)
D=RU* V*V*s#* (DO+KK*CL*CL)/2

IF D
RiM
Rid
R
CA =
SA =
Dl =
D3 =
D3 =
Y =
Y6 =
Ll =
L =
LK =
Ly =
L} =
L3 =

> TM THEN PRINT : PRI "N = ";N;", DRAG > THRUST": END

MOVE STABILITY ALIS BY DuLTA ALFHA

Cus ( - AD)

SIN ( - aD)
DV * CA* CA- (LV+DA/ V) *3A %CA+ (IA/ V) *SA*SA
(DA / V) *CA*CA+ (DV-1A/ V) *SA % CA~LV*GSA*SA

D3 %V

Yr % CA - YR * 35A

YR * CA + YL * 3aA

LV *# CA % CA - ((LA/ V) -DV)*5A%CA- (DA/ V) *SA*SA
(lb/V)*ca*CA+ (DD/ V) *3A*CA

LX * V

Le * CA + Dy * 5A

(IA/ V) #CA®CA+ (LV+DA/ V)% SA®CA+DV*GSA®*SA
L3 *V
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.

2010
2020

N

(=]

3
ZEERREUFEREREE

(I - 1K) * CA * 3A + 2K *
LK ® CA % CA +2 % 24X * 354
B/ V)*ca- (NB/ V) *»
L2 *v

L * CA % CA - (LR + Nb) *
IZ % CA % CA - 2 % LX * SA
Lk # CA * CA - (NR - LP) *
(NB/V)*CA+(LB/V§*
N2 %V

NP*GA*CA—(NR-LPg*“

NR # CA * CA + (LR + NP) *
MV % CA -~ (MA/ V) * Sa
(MD / V) * ca

M4 * Vv

(MA / V) % CA + MV * SA
M3 %V

2170 D9 = Dis * CA ~ Lk * SA
2180 L9 = L& * CA + Dk * SA

2490 A(5,
2500 A (5,

e e

(CA * CA - 5A * 3A)
% CA + IZ % 5A % SA
SA

SA * CA + NR * SA * 5A
* CA + IX * SA % 8A
SA ¥ CA - NP * 3A * 5A
SA

FIGURE ELEMENTS OF 'A' MATRIX

= (TV * CUS (AO + AD) -
RE * V
{ - D* SIN (AO + AD)

*

G
(
(
(

(L + 14 E) / 11
((IY - 13) * Rs) / 11

NEEEEIEEEEEEEE R

D) / M

+L-M*QE*V-D3)/M

(A0 + AD) - L1 - QE* M)/ (M * V + LX)
L3 -Db%* C0S (AO +AD) = D)/ (M*V + LX)
VeM-L5)/ (M*V+LX

(-Wr* SIN (FE))/ (M *V + LX)

r/ 1

(L6 + (Iy - 13) »E) / 11

(1% / 11)
(N2 + T4 * A(%,2)) / (I3 - 1)
(Wb + (I1 - IY) *QE + I4 * A(L,M4)) / (13 - 1)
(- I4 % RE + Ik * A(4,5)) / (I3 - I)
) 1(N6 - T4 %yl + I4 * A(4,6)) / (I3 - 1)
1
) = I *A(6,2) + A(l,2
) = 1% A(6,4) + A(l,4
=1%Aa(6,5) +A(l,>5
=1 % A(6,6) + A(4,6
1g = (M1 + M4 * A(3,1gg / 1Y
3) = (M3 + M4 * A(3,3)) / IY
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2510 A(54
2520 A{545
2530 A(5,6

N

B

>

—

>

&
NN e s S N

=3

—

)
[U I |

(13 - 11) * mi) / IY

(M + M4 * A(3,5)) / 1Y

2% J4 * Re / IY

M4 * A(3,7) / 1Y

=1

Q * SIN (FE) + RE * CO5 (FE)
COS +FE)

- 35iN (FE)

= - QE* SIN (FE) - RE* COS (FE)

(] a n u

FIGURE ELEMENTS OF 'B' MATRIX
-9/ u

-19/ M *V + LX)

(ME + M4 * U(3)) / 1Y

PRINT RESULTS

“THE "A* MATRIX FOR LOAD FACTOR, N = ";N

+ FRINT "BANK ANGLE, FE = ";FE * DR;" DEGREES"
"DELTA ALPHA, AD = ";AD * DR;" DEGREES"

1
1708
FN R(A(Z,d)):" "

“THE *B' MATRIX TRANSPOSED IS"

=17T08
FN R(U(T)):"

s+ PRINT
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RUN
THE *A* MATRIX FOR LOAD FACTOR, N = &

BANK ANGLE, FE = 75.5224885 DEGREES
DeLTA ALPHA, AD = 7.31234296 DEGREES

-. 064255 31.150889 -105.687431 0 0 0 O -32.1725
1.56E~04 -.181 0 0 0 -1 .01799% O

-1.4288-03 0 -1.702174 0 1 0O -,069689 0

0 -7.13%4195 0 -2.078 -.064927 .289606 0 O
-1.766E-03 0 -8.017326 .064257 -1.94903 -.015636
0 3.678639 0 .22388 7.36E-03 -.338186 0 0

00 01 0 0 0 .278755

0 0 0 0 .25 -.968246 =-.278755 O

THe *B' MATRIX TRANSYOSED I3

-5.8290% 0 -.10026 0 -15.932007 0 O O

53
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Figure C1.
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C-H RATINGS
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COOPER-HRRPER VS CMEGH

AT 1G

SRFTD TV TRACKING TAHSK
29 G / RAD

N / ALPHA
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Table D1
SAFTD STRIP CHART OUTPUTS

Strip Chart

Parameter Description Range
Fs Long. Stick Force + 30 1bs
Fs/Nz Stick Force per g 0 to 10 1lbs per g ;
Nz NormaliAcceleration 0 to 4 g's f
RMS Root Mean Square 0 to 2 i
|
Test Pulse SAFTD Tracking Task event ;
4ae Error Between + 10 deg :

Tracking Task and

Pitch Angle

. e Pitch Angle

1+

10 deg

Angle of Attack

|+

10 deg

Note: Strip charts were played back at 0.5mm per second at a

scale factor of 0.2 volts per division.
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NT-33A STRIP CHART OUTPUTS

Table D2

VSsS Scale
Digital Qutput Factor
Channel No. Parameter Description P.P. {x per wvolt)
3% Vi Indicated Velocity 106 27.5 Kt
18 Fes Long. Stick Force 26 20.0 1b
2 Nz Normal Acceleration 16 0.5 g
24 Xy AOA (vane) 38 2.0 deg
4 q Pitch Rate 4 5.0 deg/sec
S sin@® Pitch Angle 28 5.88 deg
11 €Eec Tracking Task Error D/A#l 2.5 deg
1%* hp Pressure Altitude 107 1,300 feet
Notes: 1. * Zero knots equalled 10.00 volts.

2. ** 720 feet equalled 8.45 volts.

3. Digital channels one through 12 had adjustable gain x1, x2,

x5 and x10.

Gains were xl.

4. Aircraft data tapes were played back at 1.0mm per second.

Strip chart sensitivity was 0.1

101
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Table E1

PILOT BACKGROUND

PAYNE, JAMES M., Captain, USAF

EDUCATION: BS - General Engineering, US Air Force Academy, CO

FLIGHT TIME: F-4C/E 602
F-5E 521
Other 870
Total 1993

OPERATIONAL EXPERIENCE: F-4E pilot for one year in the 334th
Tactical Fighter Squadron at Seymour Johnson AFB, NC; F-4C/E
pilot for fifteen months in the 57th Fighter Interceptor
Squadron, Keflavik NS, Iceland; F-5E Aggressor Dissimilar Air
Combat Tactics Instructor Pilot for two years in the 527th
Tactical Fighter Training Aggressor Squadron, RAF Alconbury,
United Kingdom.

STEWART, CHARLES R., Captain, USAF

EDUCATION: BS/MS ~ Aeronautical and Astronautical Engineering
Purdue University, West Lafayette, Indiana

FLIGHT TIME: A-16 1325
Other 331
Total 1656

OPERATIONAL EXPERIENCE: A-18 pilot for two years in the 356th

Tactical Fighter Squadron at Myrtle Beach AFB, SC and then served

another two year tour as an A-10 Instructor Pilot with the 92nd
Tactical Fighter Squadron at RAF Bentwaters, United Kingdom.

TOMENY, TERRY E., Captain, USAF

EDUCATION: BS/ME - Mechanical Engineering,
Rensselaer Polytechnic Institute, Troy, NY

FLIGHT TIME: T-38A 1350 i
RF-4C 1000
Other 100

Total 2450

OPERATIONAL EXPERIENCE: T-38A Instructor Pilot for four years at

Moody, AFB, GA. and Vance AFB, Okla; RF-4C Instructor

Pilot/Flight Examiner for four years at Zweibrucken AB, Germany.
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VITA

James M. Payne was born on July 2nd, 1952, in Eugene,
Oregon, and grew up in Hastings, Michigan. Graduation from
Hastings High School was followed by undergraduate schooling at
the United States Air Force Academy. He graduated from the
Academy in 1974 with a Bachelor of Science degree in General
Engineering and a commission as a Second Lieutenant in the United
States Air Force. He completed Undergraduate Pilot Training at
Laughlin Air Force Base, Texas, in 1975, and F-4C combat training
at Luke Air Force Base, Arizona, in 1976. After one year of
flying F-4E's at Seymour Johnson Air Force Base, North Carolina,
he was sent to Keflavik Naval Station, Iceland, for a fifteen
month remote tour in F-4C/E's. He then attended Enemy Weapons
School at Nellis Air Force Base, Nevada, and was subsequently
assigned to the 527th Tactical Fighter Training Aggressor
Squadron at Royal Air Force Alconbury, England. There he flew
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